Date of Award

Spring 2017

Degree Type

Restricted Access Honors Project

School

College of Liberal Arts

First Advisor

Jodi Goldberg

Abstract

Cancer is the result of multiple mutations within an individual’s genome. Each tumor has its own unique genetic makeup, even among different tumors of the same tissue (e.g. breast cancer). Researchers are now working to understand the genetics of cancers to develop novel and effective treatments directed towards tumors that carry mutations of specific genes that drive cancer. Dorr et al., used transposon-based mutagenesis to identify multiple driver genes believed to play a significant role in lung cancers. One of these genes was CUL3, a gene that plays a critical role in the polyubiquitination and degradation of specific proteins. Previous work in our lab knocked-out CUL3 from the human HCT116 colorectal cancer cell line using CRISPR/Cas9. Upon knockout, the cells displayed a variety of phenotypic changes including alteration in cell size and growth rates as measured by metabolic assays. Three of five mutant cell lines showed evidence of higher metabolic activity over the HCT116 parental cell line despite dividing less frequently. In the current study, mutant cell lines also showed significant increases in metabolic activity when compared to the HCT116 parental with P-values < 0.01. In addition, cell size was measured to determine the average sizes of the parental and mutant cell lines using ImageJ software. Analysis showed that mutant cell lines were significantly larger than the HCT116 parental line with P-values < 0.01. These differences in cell size were not due to differential effects of the metabolic assay reagent on mutant and parental cells based on one-way ANOVA analysis of cell sizes in the presence or absence of the reagent (p values ranged from 0.26- 0.987).

dc_type

text

dc_publisher

DigitalCommons@Hamline

dc_format

application/pdf

dc_source

Departmental Honors Project

Share

COinS