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1 Introduction

The goal of this project is to garner a basic understanding of the mathematics surrounding
differential geometry done on two-dimensional surfaces and to produce a computational
package that would allow easy exploration of the behavior of walks on these surfaces. We
will go into more detail of the explanation in the next section; nevertheless, a quick overview
of the words in the title is required. When we say random walk, we intend to construct a series
of steps on a surface that are each a certain distance a part and the direction of each step is
randomly determined. “Simple two-dimensional manifolds” are a set of mathematical objects
that mimic the behavior we are used to seeing on the Euclidean plane — the flat table-top on
which we usually study geometry. Specifically, they display a “smoothness” that is helpful
when attempting to define the distance between two points and the direction of a curve (both
of which are needed to define what a step is). These random walks are of interest because
they are representative of many problems in probability and partial differential equations.
Moreover, random walks are pretty well understood when they are done on the familiar space
of the Euclidean plane; however, questions that are easily answered on the plane cannot be
answered when they are extended to other surfaces with different properties.

We will be investigating random walks by studying how long they take to reach a certain
region we have defined on the surface. We call this destination region the escape region and
when a walk enters the escape region we say that it escapes. In this context, we measure
how long a walk takes to escape by calculating the length of the walk by simply adding
all of the steps from the starting point to the escape region. This terminology of “walking
until escaping” is merely a helpful shorthand for our purposes; nevertheless, it implies an
application of these mathematics to various modeling problems in biology and population
dynamics (some of which explored in [2]). Now we will provide a rudimentary understanding
of the mathematical tools that are required for our purposes.

2 Background

We need to develop machinery in order to replicate the intuitive notion of a walk on different
surfaces. If we are able to determine what a step is on each of our surfaces, then we define a
walk as simply a string of steps connected end-to-end. We define a step on a surface as the
movement to a point relatively near-by along the shortest path. In order to determine this
shortest path (as well as the direction the movement is taken), we require computational
tools from differential geometry. Most of this machinery has been learned from [1]. The
introduction to parametrized surfaces given in [1] is most readily adapted to this project be-
cause it can be easily implemented in computer programming as opposed to a more abstract
approach. We will begin with a general overview of differential manifolds that are considered
to be “regular” because of their similarity to what we consider to be intuitively smooth.

2.1 Regular Surfaces

We represent a surface as a subset of R3 by considering continuous functions µ : U → V
where U ⊆ R2 is open and V is a subset of the surface — we call the set of µ that covers the

1



entire surface in question a chart. Glossing over the large amount of detail and development
that can be extracted from this simple idea of a surface, we apply more restrictions on the
surfaces (and their charts) in order to obtain intuitively “smooth” surfaces. In a sense, these
restrictions allow us to consider surfaces that are locally Euclidean (locally plane-like) and
therefore they more closely resemble what we perceive a surface to be (hence the name for
this class of surfaces). Often, a member of the chart for a surface is called a coordinate patch
because it imposes a relationship between the coordinates of R2 — represented by U — and
a part of the surface — represented by V .

For a surface to be regular, there must exist a chart that covers the entire surface and
has coordinate patches (µ) that each satisfy the following conditions:

1. Differentiable — the coordinate functions of µ in R3 have continuous partial derivatives
for all orders

2. Homeomorphic — µ and its inverse are continuous

3. Satisfies the Regularity Condition — The differential of µ is a one-to-one linear trans-
formation

When properly constructed, a chart of a regular surface completely characterizes it, and we
can calculate all of the properties of the surface we require from the chart. Regular surfaces
are the only surfaces we will work with in this paper, and are embedded in R3 by definition.
Specifically, we choose the Euclidean plane, P ; the two-dimensional sphere of unit radius,
S; and the two-dimensional, one-hole torus of polar radius R and axial radius r, T (R, r) for
study in this project. For consistency, we impose the restrictions that all radii are larger
than zero and the polar radius of the torus is strictly greater than the axial radius of the
torus (i.e. R > r > 0).1

2.2 Charts

For easier program implementation in C++, we are going to define the charts of our focus
surfaces to be slightly different from the usual charts of these surfaces. The chart for the
Euclidean plane P is the single coordinate patch (the identity patch) φ : R2 → P defined by

φ(u, v) = (u, v, 0)

This is clearly the simplest chart.
The chart for the unit sphere S consists of two (stereographic) coordinate patches, one

being σ : R2 → S defined by

σ(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
The only way to arrive at the north pole (0, 0, 1) of S using σ is to let u and v tend to infinity;
thus, another coordinate patch is technically required to define the chart of S. Practically,
the technical need for the other coordinate patch can be ignored when implementing in a

1When these restrictions are placed on the torus, it resembles the surface of a donut.
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computer program because the difficulties arise only at that one point. Care can (and will)
be taken in order to avoid the issues arising from being on this point. For our specific
situation, we will always have the north pole contained inside of the escape region so that
the walk never needs to arrive at that point.

Finally, the chart for the torus T (R, r) consists of a single coordinate patch τ : I2 →
T (R, r) defined by

τ(u, v) = ((R + r cos(2πv)) cos(2πu), (R + r cos(2πv)) sin(2πu), r sin(2πv))

This definition of τ is easier to implement because its domain is the unit square. Computing
how to stay in the domain will be easier when the coordinates only have to be compared
to 0 or 1.2 We will use these charts whenever speaking of these surfaces for the rest of this
paper, and their form will lead to slightly different calculations that what you see in [1, 3].

2.3 Derivation of Geodesic Equations

Geodesics are defined as paths on a surface with no acceleration (relative to the surface).
This is a method of extending the idea of a line on the plane to other surfaces — done
similarly in [4]. If µ represents a coordinate patch on a surface M containing a path γ, then
we can formalize this notion of no acceleration relative to the surface by requiring γ′′ to be
normal to the surface everywhere. Let γ : [0, 1]→M , then γ is a geodesic if

γ′′(t) · µu = 0

γ′′(t) · µv = 0

for all t. We are able to represent γ(t) = µ(u(t), v(t)) and expand on this definition to
find differential equations for the coordinate functions u and v. First (omitting the explicit
writing of t and writing partial derivatives as subscripts), we have

γ′ = µuu
′ + µvv

′

and then (using the fact that since µ is a coordinate patch, we know µuv = µvu from the first
condition)

γ′′ = (µuuu
′ + µuvv

′)u′ + µuu
′′ + (µvuu

′ + µvvv
′)v′ + µvv

′′

= (u′)2µuu + (v′)2µvv + 2u′v′µuv + u′′µu + v′′µv

Now we can put this expression for γ′′ into the definition above to obtain differential equations
that the functions u(t) and v(t) must satisfy in order for γ to be a geodesic. We simplify
this substitution by using that µu and µv are orthogonal: µu · µv = 0 required by the third

2For more detail, investigate the implementation of coordinate wrapping for the torus in
MOSEY::CoordinateWrappers. The program would perform less efficiently if it had to compare the co-
ordinates to the approximation of an irrational number on each step. Moreover, adding and subtracting
an approximated irrational may lead to propagation of error in the program that would not be present
otherwise.
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condition.

γ′′ · µu = (u′)2µu · µuu + (v′)2µu · µvv + 2u′v′µu · µuv + u′′µu · µu + v′′µu · µv
0 = (u′)2µu · µuu + (v′)2µu · µvv + 2u′v′µu · µuv + u′′µu · µu

γ′′ · µv = (u′)2µv · µuu + (v′)2µv · µvv + 2u′v′µv · µuv + u′′µv · µu + v′′µv · µv
0 = (u′)2µv · µuu + (v′)2µv · µvv + 2u′v′µv · µuv + v′′µv · µv

Rearranging the above equations will be more useful for us. We can assume µu · µu 6= 0
and µv · µv 6= 0 because of the third condition on µ we imposed earlier. Thus, the geodesic
equations become

u′′ +
µuu · µu
µu · µu

(u′)2 +
µvv · µu
µu · µu

(v′)2 + 2
µuv · µu
µu · µu

u′v′ = 0

v′′ +
µuu · µv
µv · µv

(u′)2 +
µvv · µv
µv · µv

(v′)2 + 2
µuv · µv
µv · µv

u′v′ = 0

In this form we can pick out the Christoffel Symbols3 as the coefficients of the derivatives of
u and v. Specifically,

Γijk =
µjk · µi
µi · µi

where i, j, k take on the values of u and v. This “definition” means we can re-write the
geodesic equations in tensor notation.

d2xi

dt2
+

2∑
j,k=1

Γijk
dxj

dt

dxk

dt
= 0

In [1], equation 2.3 uses s as the independent variable because these equations produce a
geodesic that is parametrized by arc length (has unit speed) when the proper initial con-
ditions are given to it. Specifically, if the initial direction vector has unit magnitude, then
the resulting solution will have unit speed (and therefore be parametrized by arc length).
This notation is more compact and highlights the fact that geodesics are determined by the
Christoffel symbols and initial conditions.

2.4 Christoffel Symbols

The computer implementation of steps along geodesics uses the geodesic equations with
reference to the Christoffel symbols, so we can characterize the geodesics (and therefore
walk on the surfaces) by calculating the Christoffel symbols on each surface. Below are the
calculations producing the symbols for each of the coordinate patches from above generated
using the CAS Mathematica.

3The Christoffel Symbols are usually defined with respect to the metric tensor on a surface and then the
above definition is proven. We choose to avoid discussing the metric tensor in order to more directly arrive
at the geodesic equations.
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The symbols calculated from φ are quickly obtained. Since all of the symbols contain
second partial derivatives and φ only has linear orders of u or v, all of the symbols on the
plane are zero. (

Γuij
)

=

(
0 0
0 0

) (
Γvij
)

=

(
0 0
0 0

)
The coordinate patch σ that’s a member of the chart of S (and that we will be using for

calculations) has the symbols

(
Γuij
)

=

(
− 2u

1+u2+v2
− 2v

1+u2+v2

− 2v
1+u2+v2

2u
1+u2+v2

) (
Γvij
)

=

(
2v

1+u2+v2
− 2u

1+u2+v2

− 2u
1+u2+v2

− 2v
1+u2+v2

)
The coordinate patch we are using for the torus covers the entire surface with no prob-

lematic points (as long as domain wrapping is kept consistent, Section 3.2). The Christoffel
symbols for τ are

(
Γuij
)

=

(
0 − 2πr sin(2πv)

R+r cos(2πv)

− 2πr sin(2πv)
R+r cos(2πv)

0

) (
Γvij
)

=

(
2π
r

sin(2πv)(R + r cos(2πv)) 0
0 0

)
These Christoffel symbols for each of the surfaces are finite at every point in their domains.

This good behavior is helpful when implementing them in the computer program, and it is
a result of the choices of coordinate patches we use to study the surfaces.

3 Random Walks

Now that we have all of the tools necessary to take steps on each of our three surfaces, we
are able to walk on them. The implementation of these walks is in C++ using an application
of the standard Runge-Kutta method to numerically solve the geodesic equations in steps.
Once we are able to take a single step in any direction and from any point on the surface,
we are able to randomly walk on the surface.

For the implementation in C++, we have chosen to have the direction be uniformly ran-
dom; this choice could be edited by the user in the MOSEY::RandDouble class. We walk in
different situations; when we reference a situation, we are talking about the surface-escape
region pair that (we believe) defines the behavior of the walks. A general structure to walk
on a given surface is constructed in the package MOSEY where one can define a surface by its
Christoffel symbols (MOSEY::CurveTensor) and how its coordinates connect across domain
edges (MOSEY::CoordinateWrappers). This package is designed to study various situations
involving regular surfaces and simply defined escape regions. The walks are done in the
coordinate space and then output to a csv-file in a format depending on the situation — for
example, the walk distances are output with respect to polar angles when walking on the
sphere (Section 4.2).

For each situation, we can explore several questions using the package MOSEY. How are
the walk lengths and escape regions related? How much of an impact does the surface the
walk is on have? Does the size of the escape region (relative to the surface) have a large
effect? The results given below merely scratch the surface of the knowledge that could be
garnered from MOSEY.

5



3.1 Stepping Method

On many surfaces, the geodesic equations are able to be solved analytically — both P and
S have this behavior; however, these analytical solutions do not necessarily allow for an
increase in speed. Moreover, we would like MOSEY to be constructed generally enough to
deal with surfaces that contain geodesics that are more difficult to define analytically like
T (R, r). Therefore, we have written a method for stepping on surfaces that is a numerical
approximation but is also quick and can be used with any set of self-consistent Christoffel
symbols.

The Runge-Kutta method is a process to approximate first order differential equations.
We will be using the standard, fourth order Runge-Kutta method (RK4) that will be outlined
for our specific problem below. First, we must transform our two second-order geodesic
equations into a system of first order differential equations so that we are able to apply the
RK4 method.

We begin by expanding the geodesic equations and using u and v instead of x1 and x2.

d2u

dt2
= −Γuuu

(
du

dt

)2

− 2Γuuv
du

dt

dv

dt
− Γuvv

(
dv

dt

)2

d2v

dt2
= −Γvuu

(
du

dt

)2

− 2Γvuv
du

dt

dv

dt
− Γvvv

(
dv

dt

)2

Define the first derivatives of u and v as their own variables

p = du
dt

q = dv
dt

Then the geodesic equations becomes the system

du

dt
= p

dv

dt
= q

dp

dt
= −Γuuup

2 − 2Γuuvpq − Γuvvq
2

dq

dt
= −Γvuup

2 − 2Γvuvpq − Γvvvq
2

This is a system of first order differential equations, so we can adapt RK4 to numerically
solve it.

Define y = 〈u, v, p, q〉. Suppose (u0, v0) is the point we wish to step from and we are
moving at an angle θ relative to the positive u axis (at that point). Then the initial vector
is y0 = 〈u0, v0, cos(θ), sin(θ)〉. This begins the geodesic with unit speed, meaning that it
is parametrized by arc length, so if we wish to step a distance h, we numerically solve the
initial value problem given by

dy

dt
= F (y) = 〈p, q,−Γuuup

2 − 2Γuuvpq − Γuvvq
2,−Γvuup

2 − 2Γvuvpq − Γvvvq
2〉

y(0) = y0
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until t = h. Let N be the number of iterations of the RK4 method we will use to approximate
the system given above. Define δ = h/N , then we write our approximation scheme below.

y ← y0

loop N times:

k1 ← F (y)

k2 ← F (y + (δ/2)k1)

k3 ← F (y + (δ/2)k2)

k4 ← F (y + δk3)

y ← y + (δ/6)(k1 + 2k2 + 2k3 + k4)

When implemented correctly, the loop exits with y containing an approximate value for u,
v, p, and q a distance h away from (u0, v0) on the surface. This method is constructed in
the MOSEY::Stepper class.

3.2 Coordinate Wrappers

The implementation of the walks in MOSEY assumes that there is a single coordinate patch
whose range covers the area of the surface that the walks will be contained within. Some
of the coordinate patches used do not cover the whole surface (e.g. σ), but as long as the
un-covered points are in the escape region, this lack of coverage is not a problem. Other
coordinate patches have bounded domains (e.g. τ), and in order for there to be a one-to-
one relationship between the coordinates in the domain and the points on the surface, we
must be careful when a walk attempts to cross the border of the domain. The functional
class MOSEY::CoordinateWrappers is an attempt to deal with this difficulty. Each surface
has a “coordinate wrapper” defined for it that is intended to keep the points within the
desired region without affecting the walk. Both φ and σ have unbounded domains, so their
coordinate wrappers do not edit the walk points; however, τ is confined to the unit square.
Studying how τ is related to the torus, we see that parallel edges are “glued” together, so
if we exit on one side, we need to re-enter on the other side. This wrapping is done with
simple arithmetic.

Another, unintentional, utility is available through the coordinate wrapper style. Some
situations require a walk to be reflected off a boundary like the Circular Walls situation on
the plane (Section 4.1.2). These reflection boundaries, walls, can be implemented in this
function style for a specific situation by doing calculations on the current and previous step
points in the domain.

3.3 Optimizations

In order for the walks on the different surfaces to be efficiently studied, some situations admit
specific optimizations, saving computing time. We are not claiming these processes to be
perfectly optimized (read [5] for a more detailed exploration of efficient numerical solutions
to the geodesic equations), but we wish to explain the methods we have used to make the
simulation of walks more efficient.
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The first (and most widely applicable) optimization is recording every step of a random
walk as if it was the first step of the walk following it. This allows for several walks starting
from different initial positions to be acquired through one iteration. We are able to use this
data because steps are independent of their predecessors.4

Walks on the plane offer the massive simplification of having all zero Christoffel symbols.
In order to take a step of length h at an angle θ from the positive u-axis, we could simply
add (h cos(θ), h sin(θ)) to the initial point. We do not do this directly because we would
like uniformity across the code package. However, using RK4 with the number of iterations
N = 1 produces the exact same result algebraically. Due to the limited precision of numbers
in computers, this equality is not perfect; nevertheless, it produces a result that only differs
from the exact result due to inherent truncation errors in the computer (which implementing
the exact result would suffer from as well). Therefore, when the class MOSEY::Stepper is
configured to take a step on P , the number of iterations used in RK4 is set to one (overriding
any user specifications). This avoids unnecessary calculations from additional loops that
would not produce a more accurate result.

The two-dimensional sphere is also symmetrical. In this specific situation, the escape
regions are generally circles with centers at the north pole. Because of the symmetry around
the axis of the sphere, we are able to only consider polar angle (the angle the point makes
with the north pole) when analyzing how the walk distance changes depending on the starting
location. We calculate the polar angle φ of the point σ(u, v) by

φ = arctan

(
1

u2 + v2

)
This simplification will not help the walks themselves be simulated more efficiently; never-
theless, it will allow for the analysis of the data gathered from the walks be simplified —
making it one-dimensional instead of two.

Due to the inherently large amount of noise generated by collecting data in a purely
pseudo-random fashion, the general trends that we expect to appear only arise after several
hundred (if not more) walks. Since each walk is hundreds or even thousands of steps (and
each step is treated as its own data point), we are required to have millions of data points
collected for each manifold-escape region pair. This amount of data leads to an inability to
process it all, so we have chosen to compress the data into summary files that are at most
one hundred thousand data points. The raw data is still stored; nevertheless, these summary
files are valuable to construction of plots that would crash under the weight of millions of
points. The compression method is binning the data into thin bins and determining the
mean for each bin. This procedure substitutes one data point for a few thousand, which
quickens analysis and plotting while maintaining accurate reflection of the data. Since this
“compressed means” procedure loses information in the data (specifically, how skewed the
data is), we avoid using the compressed means unless absolutely required. The instance where
we use the compressed means in this report is when plotting several different situations on
the sphere in Figure 4 below.

4There are more general random walk problems that deal with steps that are dependent on each other,
but this complication would only slow the program down for our purposes. Various modifications could be
made in the MOSEY package in order to account for steps that are dependent on previous ones.
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4 Results

The construction of this package has arrived at several results that display the versatility of it.
While only a small number of concrete situations have been investigated, these investigations
have shown that MOSEY is versatile enough to tackle almost any situation defined on the torus,
sphere, or plane. We will now go into more detail about specific results of this project.5

4.1 Plane

First, we began the investigations with a situation that can be solved analytically. As stated
earlier, the Plane, being the special situation with all zero Christoffel symbols, allows for an
easy testing ground for our random walk machinery.
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Figure 1: Example data plot from the plane
with the escape region beginning at radius 1
and radius 3.
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Figure 2: Circular Walls example (only the
first quadrant is plotted).

4.1.1 Ring

The “Ring” situation uses P as the surface and two concentric circles as the border of the
escape region. If a point is inside the smaller circle or outside the larger cirle, then the walk
has escaped. This allows for the plane to be bounded in a continuous fashion, and the walks
have a radial symmetry, so only the radius-walk length dependence needs to be studied.

Displayed in Figure 1, the averages over the walks show the expected quadratic depen-
dence that is calculated in the analytical solution. This specific situation is wildly inefficient

5When medians of data are plotted in one-dimension, the first quartile and third quartile are included to
give an idea of the breadth of the distribution.
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(because there is an analytical solution available); nevertheless, it displays the power of the
random walk method. This relatively simple computational method allows for determination
of numerical solutions to intricate differential equations, and this method has a process that
is easy for the user to understand — more on this discussion in section 4.5.

4.1.2 Circular Walls

We now extend the method to a situation that is slightly more complex. This situation
has “walls” — borders that the walk bounces off of instead of passing through. Moreover,
it has an escape region with a non-smooth border. The walls are defined as the unit circle
around the origin, and the escape region is a square within the walls. These two complexities,
which offer large resistance in finding the analytical solution, are easily incorporated into
this framework. Nevertheless, the symmetries in this situation are not enough to simplify
the analysis to one dimension, therefore requiring more data to be generated.

Figure 2 shows an example for this situation, the square has 0.5-length sides and is
centered on the origin. Each bin has the median of the walks starting from inside that bin
as its value. The behavior in this case is predictable — the walks approach zero length
exponentially as they near the escape region.

4.2 Sphere
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Figure 3: Example data plot from the sphere
with the escape region beginning at polar an-
gle 0.4.
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The sphere surface has been studied the most extensively in this project because it is a
good compromise between unexplored territory and few output variables. Since the escape
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regions that are studied in these situations are symmetric around the polar axis, we are
able to represent the data on the sphere as its angle with respect to the positive z-axis in
normal polar coordinates. This angular representation allows for the analysis to be done in
one-dimension, enabling more precise analysis to be done without requiring that much more
data. Moreover, the escape regions are also able to be characterized by their border at a
certain angle, the escape angle.

In Figure 3, you can see how the length of the escape walk changes depending on the
polar angle of the starting point — this behavior is interesting and appears to be a fractional
power dependence. Several different sizes of escape regions on the sphere were studied, and
the summary of the results can be seen in Figure 4 (using the compressed means instead of
the raw data). Most importantly, the length of the escape walk from anywhere on the sphere
seems to increase exponentially as the escape angle decreases.

4.3 Torus
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Figure 5: Example Torus with the U-band es-
cape region having a width of 0.1.
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Figure 6: Example Torus with the V-band es-
cape region having a width of 0.1.

The torus is the surface in this project with the richest structure, and in our specific
instance we study T (2, 1). The walks are assumed to have almost no symmetry involved,
so the entire domain of τ is studied. We focus on two different types of escape regions on
the torus U-bands and V-bands. U-bands are escape regions that contain v coordinates
anywhere between 0 and 1. Similarly, V-bands contain u coordinates anywhere between 0
and 1. These are rudimentary escape regions to study, but since the behavior of walks on
this surface is not very well known, we must begin with the basics.

Figure 5 displays an example of the situation with a U-band of width 0.1. The placement
of this band on torus is not of great importance because of the symmetry in the u coordinate;
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therefore, we placed the band in the center of the defined domain so the graphic is easier
to study. Here we can see how the walk shortens exponentially as one approaches the band
— the uniform color aligned with the band in this image is due to the breakdown of the
logarithmic scale from lack of data in that region.

Figure 6 displays a V-band example (of width 0.1), which is much more interesting. The
placement of this band on the torus is of importance because the curvature of the torus
changes in the v coordinate. This band was chosen to wrap around the outside of the torus,
and one can see that the walks decrease in length when they begin inside of the torus. This
behavior was unexpected and offers an arena for further exploration.

4.4 Overall Package

We would like to point out the central product of this project. The package MOSEY that was
used to simulate these walks on various surfaces is perhaps the most valuable outcome of this
project. Its structure allows for incorporation of an amazing amount of different situations,
meaning that it can be used to quickly generate data for a more detailed study of this escape
length problem. Moreover, although not required, experience with C++ would allow the user
to modify any part of the package. Even with minimal programming experience, the code
and its documentation allows for the user to experiment with different situations, including
changing the starting position or the size of the escape region.

This package’s most important trait is its flexibility. The examples already written
into the package attempt to give an idea of what can be done with it. Specifically, the
MOSEY::CoordinateWrapper function style can be used to define walls (like in the Circular
Walls situation) as well as wrap coordinates to maintain domain consistency (like on the
torus).

4.5 Numeric Solution

We end with an example of applying this idea of random walks on different surfaces. The
convergence of the solution in the Ring situation suggests a relation between averaging
random walks in a situation and solving the differential equation ∆u = −1 for the same
situation. Indeed, the solution to the system

∆u(x, y) = −1

u(x, y) = 0 if x2 + y2 = 1 or x2 + y2 = 9

gives the quadratic dependence shown in the average of the walks for the given Ring situation.
This hint of a relationship is exciting because extending ∆u = −1 to other surfaces and
escape regions makes determining the solution more difficult, while extending the idea of a
random walk is in some sense easier (at least we know how to do it).

5 Conclusion

Personally, this project was able to give me an introductory understanding to simple differ-
ential geometry; an understanding that is complex enough to construct numerical approx-
imations of geodesics on various surfaces. Moreover, we were able to successfully create a
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flexible and powerful simulation package in C++: MOSEY. MOSEY is able to simulate random
walks on various surfaces; the plane, sphere, and torus are already built into its structure.
Random walks have been studied on these simpler surfaces and interesting behavior has
been found. The documentation of this package is attached to the github repository that it
is stored online, available to the public.6

6github.com/tomeichlersmith/RandomManifoldWalks
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